



4軸モーションコントローラ DS2000A 取り扱い説明書



SS Motion Control ソフトウェア編 Ver.1.1.3



# 目次

| 1. はじめに                     | 3     |
|-----------------------------|-------|
| 2. ソフトウェアセットアップインストールとセットアッ | プの準備4 |
| 2-1 ソフトウェアの取得               | 4     |
| 2-2 インストール手順                | 4     |
| 2-3 アンインストール手順              | 5     |
| 3. コントローラ接続                 | 6     |
| 3-1 動作環境の準備                 | 6     |
| 3-2 接続方法                    | 6     |
| 3-3 コントローラとの USB 通信の開始      | 7     |
| 4. アプリケーション画面の説明            | 8     |
| 4-1 基本画面構成                  | 8     |
| 4-2 表示エリア詳細                 | 8     |
| 4-3 「共通操作/非常停止エリア」説明        | g     |
| 4-4 接続後の画面                  | 10    |
| 4-5 各種選択タブの名称と機能            | 11    |
| 5. ユニット構成画面詳細               | 12    |
| 6. 「パラメータ設定」の画面構成と各種機能      | 13    |
| 6-1 アクションボタンの機能詳細           | 13    |
| 6-2 パラメータ設定画面の詳細            | 14    |
| 7. 駆動制御画面の説明                | 19    |
| 7-1 軸フィールドのアクティベーション        | 19    |
| 7-2 フィールドの説明                | 20    |
| 8. ティーチング画面の説明              | 21    |
| 8-1 ティーチングテーブル              | 21    |
| 9. プログラム駆動画面の説明             | 22    |
| 9-1 駆動コマンド選択とプログラムシーケンス     | 22    |
| 9-1.1 アクションボタン詳細            | 22    |
| 9-1.2 インジケータ詳細              | 23    |
| 9-1.3 プログラム駆動コマンドー覧表        | 23    |
| 10. コマンド入力エリアとパラメータ詳細の説明    | 24    |
| 10-1 プログラム駆動画面の説明           | 24    |
| 10-2 駆動コマンド詳細               | 25    |
| 10-2.1 「原点復帰」コマンド           | 25    |
| 11. 速度テーブル画面の詳細             | 31    |
| 11-1 各軸の速度を変える方法:           | 32    |
| 12. 入出力ポート画面の詳細             |       |



| 補足       |                  | 34 |
|----------|------------------|----|
| Appendix | x A. トラブルシューティング | 34 |



#### 1. はじめに

本書は、駿河精機製 DS2000A モーションコントローラの操作アプリケーション (「SS Motion Control」(以下、SSM)の使用方法を説明したものであり、駿河精機製 DS2000A の機能をご利用いただくために、本書をよくお読みいただき、本ソフトウェアの機能を十分ご 理解いただいた上でご使用ください。

弊社提供の SSM は、予告なしに変更修正を行う場合があります。弊社 WEB サイトにて常に最新版を掲載していますので、ご使用の際には最新版をダウンロードしてください。



#### 2. ソフトウェアセットアップインストールとセットアップの準備

#### 2-1 ソフトウェアの取得

本アプリケーション実行に必要なファイルを弊社ダウンロードサイトから取得してください。

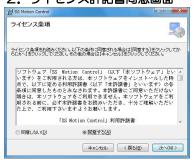
| 名前     | ファイル名                              | 取得場所            |
|--------|------------------------------------|-----------------|
| セットアップ | SSMotionControl-1.0.0-ja.msi (日本語) | 弊社 WEB サイトにて公開中 |
| ファイル   | 《英語版有り》                            |                 |

モーションコントローラ操作アプリケーションのセットアップファイル

「SSMotionControl-1.0.0-ja.msi」を実行し、画面表示手順に従ってセットアップしてください。

#### 2-2 インストール手順

インストールは、ドライバ ⇒ SS-モーションコントロールの順です。SS-モーションコントロールの インストール中にデバイスドライバのインストール画面が表示されます。画面の手順を追い、インスト ールを完了します。


#### 1. セットアップ開始画面



#### 4. ショートカット選択画面



#### 2. ライセンス許諾書同意画面



#### 5. インストール開始画面



#### 3. インストールフォルダ選択



#### 7. ドライバ・インストール完了





8. アプリインストール完了



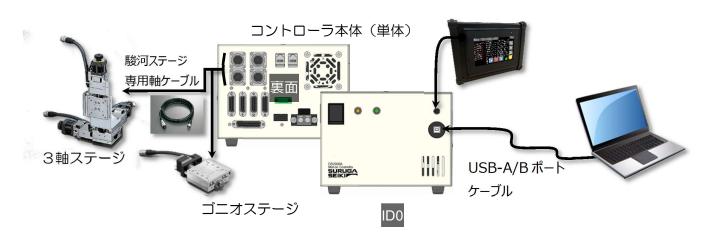


## 2-3 アンインストール手順

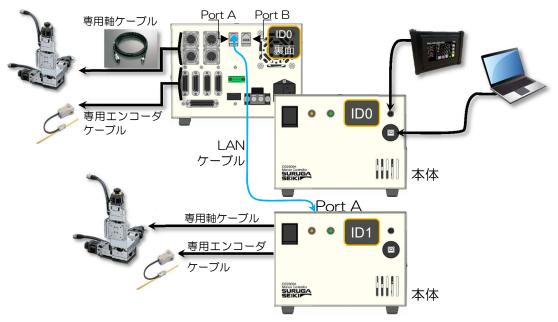
- ✓ コントロールパネルからプログラムのアンインストールを選択し、「SS Motion Control」を アンインストールしてください。
- ✓ デバイスドライバは「Windows ドライバ パッケージ Cypress (CYUSB) USB」または 「Windows ドライバ パッケージ – Cypress (CYUSB3) USB」をアンインストールします。



# 3. コントローラ接続


#### 3-1 動作環境の準備

コントローラ「単独」の場合と、2台「連携」の場合とでは初期設定方法等が異なります。


| 名称            | 数量     | 備考                                |
|---------------|--------|-----------------------------------|
| (1) PC        | 1台     | Windows XP(32bit)または Windows 7 以降 |
| (2) USB ケーブル  | 1本     | PC 側:TYPE-A、コントローラ側:TYPE – B      |
| (3) コントローラ    | 1台     | 単独の場合、ID を" 0 "にします。              |
|               | 《2 台目》 | LAN                               |
| 《(4)ハンディポータル》 | 1台     | PC の代わりに、タッチパネルでの操作が可能。           |
| (オプション別売り)    |        | (付属の専用ケーブル)                       |

#### 3-2 接続方法

● 単独運転の接続イメージ



● 2台連携運転の接続イメージ



駿河精機株式会社 ©2019 Suruga Seiki Co., Ltd. Ver.1.1.3(2019/12)



#### 3-3 コントローラとの USB 通信の開始

アクションボタンの詳細

接続 画面右上部

画面右上部の「接続」ボタンを押してください。

コントローラとの USB 通信が開始されると、各部操作ボタンが有効になります。

注意: USB 通信が開始出来ない場合、「Appendix A.トラブルシューティング」を参照してください。

USB接続を切断する場合には、画面右上部の「終了」ボタンを押してください。 同時に、本ソフトウェアも終了します。

注意:本体コントローラでプログラムシーケンス実行中に USB を切断(SSM 終了)しても、シーケンスは中断しません。中断させるためには、USB 通信(SSM 接続)を再接続させ、中断する必要があります。

#### ソフト起動後の画面(USB接続前)



#### USB 接続後の画面(2台連携時)



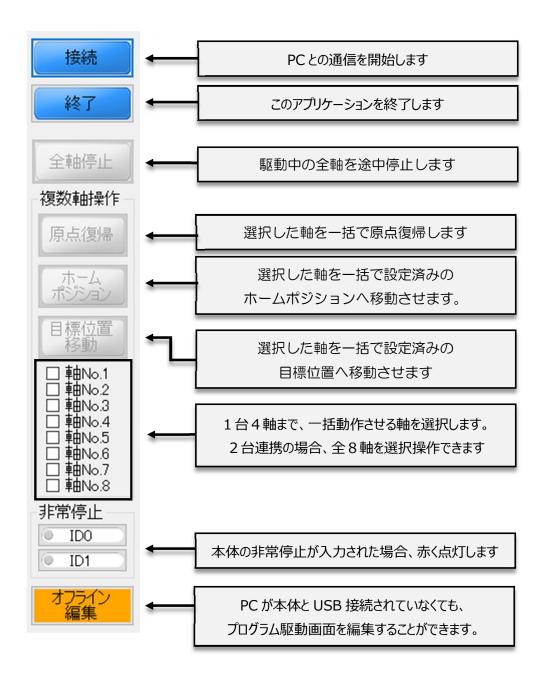


#### 4. アプリケーション画面の説明

#### 4-1 基本画面構成



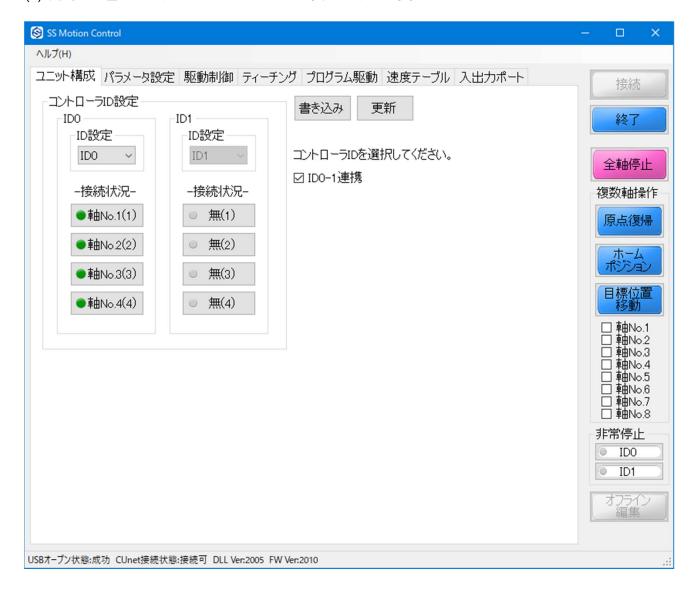
#### 4-2 表示エリア詳細


| 表示エリア | 名称       | 機能                              |
|-------|----------|---------------------------------|
|       | 接続       | PC 通信を開始します。                    |
|       | 終了       | PC 通信を遮断し、SSM を終了します。           |
|       | 全軸停止     | 駆動中の全軸を緊急停止します。                 |
| 常駐*1  | 原点復帰     | チェックマークを入れた軸を一斉に原点復帰。           |
|       | ホームポジション | チェックマークを入れた軸を一斉にホームポジションへ移動。    |
|       | 目標位置移動   | チェックマークを入れた軸を一斉に「目標位置」へ移動。      |
|       | 非常停止     | コントローラの非常停止入力でインジケータを赤点灯。       |
|       | ユニット構成   | コントローラの接続状況確認や ID 番号の振り分けを行います。 |
|       | パラメータ設定  | 接続された自動ステージの個々のパラメータ設定。         |
|       | 駆動制御     | 各軸の手動制御(ジョグ/インチング等)を行います。       |
| 機能タブ  | ティーチング   | ティーチングポイントの位置情報入力を行います。         |
|       | プログラム駆動  | プログラムシーケンス駆動を行います。              |
|       | 速度テーブル   | 全軸共通のスピードテーブルの設定を行います。          |
|       | 入出力ポート   | 入出力ポートの確認を行います。                 |
| 接続状態  |          | プログレスバーやドライババージョンが表示されます        |
| 詳細表示  |          | タブ切り替えで表示内容が変わります。              |

<sup>\*</sup>共通操作/非常停止表示エリアは、タブ画面を切り替えても常駐します。



#### 4-3 「共通操作/非常停止エリア」説明


共通エリアは下の抜き出しのように、PC 通信前と通信後では操作可能ボタンの表示が異なります。 操作可能の場合な色付き、操作不可の場合にはグレイアウトされます。





#### 4-4 接続後の画面

- (1) PC との接続が成功している場合、グレイアウトされていた機能が解放されます。
- (2) 同時に画面下のステータスバーに"成功"の表示がされます。



\*PC との接続が成功すると、"USB オープン状態: 成功"と表示されます。
\*PC との接続が失敗すると、"USB オープン状態: 失敗"と表示されます。

USBオープン状態: 失敗 CUnet接続状態: DLL Ver: 2005 FW Ver: 0

参考:接続できない場合、「Appendix A.トラブルシューティング」を参照してください。



# 4-5 各種選択タブの名称と機能

モーションコントローラ操作アプリケーションは、タブ操作により画面を切り替えることができます。

| タブ名称    | 画面内容                                         |
|---------|----------------------------------------------|
| ユニット構成  | モーションコントローラのシステム構成                           |
|         | ● コントローラが1台の場合には、ID0、または、ID1 を接続コントローラへ      |
|         | 任意に割り振ることが出来ます【ID0 = デフォルト】                  |
|         | ● コントローラ2台連携時には、ID0 と ID1 をそれぞれへ任意に割り振ること    |
|         | が出来ます。                                       |
|         | ● PC 接続とオプションのハンディポータルを接続できるのは、ID0 を割り振      |
|         | られたコントローラのみです。                               |
| パラメータ設定 | 接続されたステージのパラメータを設定、変更、確認する画面                 |
| 駆動制御    | 駆動軸毎に手動(ソフト)操作を行えます。                         |
|         | 有効、移動距離指定、移動開始/停止などを操作                       |
| ティーチング  | ティーチング位置決め情報を管理する画面                          |
| プログラム駆動 | プログラム機能を制御する画面                               |
| 速度テーブル  | 速度テーブルを設定する画面                                |
| 入出力ポート  | モーションコントローラの OUTPUT の変更、および、INPUT/OUTPUT の状態 |
|         | を確認する画面                                      |



#### 5. ユニット構成画面詳細

この設定画面では、接続されたコントローラの ID の設定を行います。

《コントローラ単体(4軸)構成の場合のアクションボタン表示》



初期状態では、コントローラ本体の ID は"ゼロ"に設定されています(ID0)。

#### 2台連携(8軸駆動)

連携させる2台目のコントローラ本体を「ID1」に設定します。

初期状態では、コントローラ本体は「ID0」に設定されています。《ID0》の項目で「ID1」を割り振り、「書き込み」ボタンを押し、ID0-1 連携の項目にチェックをいれます。

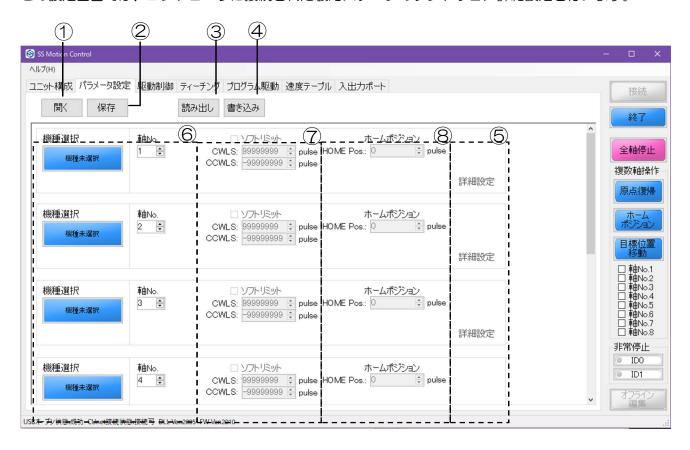
その後、2台のコントローラ本体の電源を「IDO」から順次再投入します。

コントローラ本体のオレンジランプが点灯後、「更新」 ボタンを押すことで、緑ランプが点灯し、本ソフトが コントローラ本体の最新状態を取り込みます。





取り込みが成功すると左のような画面になります。


この時、「ID0-1 連携」にチェックが入っていることを必ず確認してください。

注意: 2台を連携させる場合には、コントローラ本体バックパネルの「PortA」同士をLANケーブルでつなぐ必要があります。



#### 6. 「パラメータ設定」の画面構成と各種機能

この設定画面では、コントローラに接続された駿河ステージのソフトウェア詳細設定を行います。



#### 6-1 アクションボタンの機能詳細

| 番号         | 機能 詳細説明                       |
|------------|-------------------------------|
| ① 開<       | 保存したパラメータ設定を PC 側から呼び出します。    |
| ② 保存       | 確定したパラメータ設定を PC 側に保存します。      |
| ③ 読み出し     | コントローラ本体に登録されたパラメータ設定を読み出します。 |
| ④ 書き込み     | コントローラ本体に確定したパラメータ設定を登録します。   |
| ⑤ 機種選択     | コントローラ本体に接続されたステージの機種を選択します。  |
| ⑥ ソフトリミット  | 軸毎のソフトリミットを設定します。             |
| ⑦ ホームポジション | 軸毎のホームポジションを設定します。            |
| ⑧ 詳細設定     | 接続されたステージ固有のパラメータ詳細を設定します。    |



## 6-2 パラメータ設定画面の詳細

① PC にセーブした CVS 形式(拡張子、\*.dat)のパラメータデータを呼び出し、

開く 「パラメータ設定画面」へ反映させます。コントローラ本体への反映は「書き込み」を行います。

② パラメータデータの本体への保存

保存 パラメータ設定画面で設定したデータを CSV 形式にて PC ヘセーブします (拡張子 "\*.dat"は自動的に付与されます)。

③ パラメータデータのコントローラ本体から読み出します。

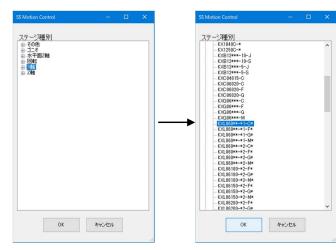
| コントローラ本体に登録されているパラメータ詳細設定を読み出し、本ソフトウェアへ反映させます。

④ パラメータデータをコントローラ本体へ書き込みます。

書き込み

**重要**: 各軸のパラメータ設定を変更した場合、コントローラ本体へ反映させるには必ず 登録を行います。

⑤ 機種選択と軸番号の設定




本体のバックパネルに接続された自動ステージを本ソフトウェア に登録します。本ソフトウェアは、接続機種を自動判定できません。軸番号と選択機種を、必ず、手動で一致させる必要があります。

パラメータ設定画面の「機種未選択」ボタンを押し、「ステージ種別」をポップアップさせます。機種

に合わせて(+)ノードを展開します。

例えば、水平直動ステージならば「X軸」を展開すると、駿河自動ステージの型式がツリー状に羅列されます。該当機種をハイライトした後、OKボタンを押して登録完了です。





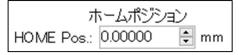
登録後は「機種未選択」の文字が選択機種名に換ります。 「軸 No.」は、バックパネル接続中の接続ポート No.と同一に

します。

⑥ ソフトリミットの設定



☑ ソフトリミット CWLS: 999,99999 ♣ mm CCWLS: -999,99999 ♣ mm


機種別にソフトリミットを設 定します。

CWLS ⇒ 正回転側のソフトリミット CCWLS ⇒ 逆回転側のソフトリミット

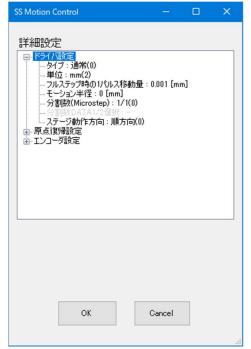
チェックマークを入力することで、

ソフトリミットの設定が可能になります。設定単位は、詳細設定により変更することが出来ます。 (例、 $mm \Rightarrow \mu m$ )。

#### ⑦ ホームポジションの設定



自動ステージに任意のホームポジションを設定します。 ハード/ソフトリミット内であれば、任意のホームポジションを 何処にでも再設定可能です。


#### ⑧ 詳細設定

接続された自動ステージのパラメータ詳細を設定します。「機種選択」時に自動ステージの型式を 入力していれば、自動的にプリセットされています。



#### (ア) 詳細設定 >> ドライバ設定

選択された機種により、詳細設定は自動的にプリセットされています。



#### ● 「タイプ選択」

通常: 直軸とゴニオ自動ステージ

ロータリー:回転自動ステージ

サインモーション: KGB/KAB 等の特殊なステージ

#### ▶ 「単位」

各軸の移動量単位を選択します。

#### ● 「フルステップ時のパルス移動量」

フルステップ1パルス当たりの移動量を設定します。 1パルス当たりの移動量は、この値を基に分割数から自動 計算されます。分割数に合わせてこの値を変えないように します。

#### ● 「モーション半径」

サインモーションのモーション半径を設定します。

#### ● 「分割数 (Microstep)」

コントローラ本体のドライバ分割数を登録します。コントローラ本体の右面の調整窓を開け、各軸 の分割数を

ロータリースイッチにより物理的に確定した各軸の分割数を入力します。本ソフトウェアはハードウェア側の設定を自動認識しません。分割数は、以下の表を参照してください。

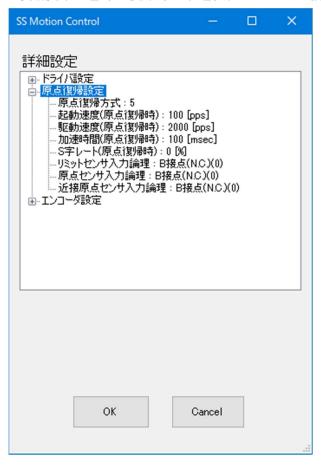


コントローラ本体の右側面にある、

左のようなロータリースイッチの矢印の位置で分割数が変わります

| スイッチ位置 | 0     | 1     | 2     | 3     | 4     | 5     | 6    | 7    | 8    | 9    |
|--------|-------|-------|-------|-------|-------|-------|------|------|------|------|
| 分割数    | 1/1   | 1/2   | 1/4   | 1/5   | 1/8   | 1/10  | 1/20 | 1/40 | 1/80 | 1/16 |
| スイッチ位置 | A(10) | B(11) | C(12) | D(13) | E(14) | F(15) |      |      |      |      |
| 分割数    | 1/25  | 1/50  | 1/100 | 1/125 | 1/200 | 1/250 |      |      |      |      |

分割数を細分した時の1パルス当たりの移動量は、フルステップ時のパルス移動量をもとに自動計算されます。但し、全ての分割数における最高速度は500kpps を上限とします。


#### 「ステージ動作方向」

モータ正回転時移動方向を定義します。直動や回転あるいはゴニオに関わらず、モータの正回転に 連動する進行方向を順方向としています。



#### (イ) 詳細設定 >> 原点復帰設定

原点復帰処理時の復帰方法や速度、センサ入力論理を設定します。



# ● 「原点復帰方式」

方式詳細は下の表・を参照のこと。

# ● 「起動速度」

駆動速度に合わせて設定します。

## ● 「駆動速度」

原点へ移動する速度を設定します。

#### ● 「加速時間」

原点復帰の加減速時間を設定します。

# ● 「S 字レート」

加減速のS字カーブ割合を設定します。

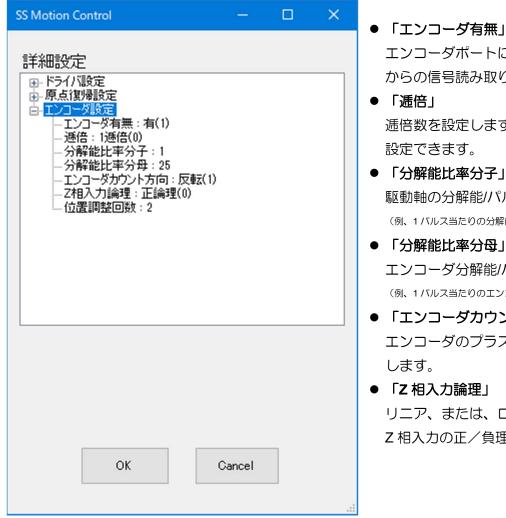
# ● 「リミットセンサ入力理論」

自動ステージに搭載しているセンサの ON/OFF 判定を設定します。

# ● 「原点センサ入力理論」

自動ステージに搭載しているセンサの ON/OFF 判定を設定します。

#### ● 「接近原点センサ入力理論」


自動ステージに搭載しているセンサの ON/OFF 判定を設定します。

# 原点復帰タイプ詳細

| タイプ 0 | 原点復帰を行いません。                                |
|-------|--------------------------------------------|
| タイプ 1 | CCW 方向に検出を行い、初めに NORG 信号の CW 側エッジの検出工程を行い、 |
|       | 次に ORG 信号の CCW 側エッジの検出工程を行います。             |
| タイプ 2 | CW 方向に検出を行い、初めに NORG 信号の CCW 側エッジの検出工程を行い、 |
|       | 次に ORG 信号の CW 側エッジの検出工程を行います。              |
| タイプ 3 | CCW 方向に検出を行い、ORG 信号の CCW 側エッジ検出工程を行います。    |
| タイプ 4 | CW 方向に検出を行い、ORG 信号の CW 側エッジ検出工程を行います。      |
| タイプ 5 | CCW 方向に検出を行い、CCWLS 信号の CWW 側エッジ検出工程を行います。  |
| タイプ 6 | CW 方向に検出を行い、CWLS 信号の CW 側エッジ検出工程を行います。     |



(ウ) 設定 >> エンコーダ設定バックパネルポートに接続されているエンコーダの仕様を定義します。



エンコーダポートに接続したエンコーダ からの信号読み取りを設定します。

逓倍数を設定します。1、2、4逓倍を

#### ● 「分解能比率分子」

駆動軸の分解能/パルスを入力します。

(例、1パルス当たりの分解能= 1µm/pulse)

エンコーダ分解能/パルスを入力します。

(例、1 パルス当たりのエンコーダカウント数= 25/pulse)

#### 「エンコーダカウント方向」

エンコーダのプラス/マイナス方向を設定

リニア、または、ロータリーエンコーダの Z相入力の正/負理論値を設定します。

#### 「位置調整回数」

目標位置への命令パルス数を完了した際、

それが現在位置と異なる場合、位置調整のためにパルスを戻す、あるいは、進めることにより現在 位置と目標位置の一致を試みます。



#### 7. 駆動制御画面の説明

7-1 軸フィールドのアクティベーション

初期状態では、パラメータ設定を終えた全ての軸が無効状態にされています。

《初期状態の軸手動操作テーブル》



これら軸のアクションボタンやインジケータを起動するために軸アクティベーションを行います。 軸フィールドのアクティベーション



ボタンのクリックで自動ステージの操作可/不可の切り替えが可能になります。



#### 7-2 フィールドの説明



#### 7-2.1 アクションボタン詳細

| 名称        | 説明                            |
|-----------|-------------------------------|
| 開始        | 設定した目標位置への軸の駆動を開始します。         |
| 停止        | 駆動中の軸を停止させます。                 |
| 目標位置      | 軸の目標位置を指定します。単位はパラメータ詳細設定から反映 |
| パルス/エンコーダ | 制御方式を設定します。                   |
|           | パルス ⇒ オープンループ                 |
|           | エンコーダ ⇒ クローズドループ (要エンコーダ入力)   |
| JOG/インチ   | CCW/CW ボタン操作の JOG/インチング指定します。 |
|           | JOG モードでは<br>移動速度を設定          |
| 移動速度(単位)  | ジョグ/インチングの速度を指定します。           |
| 速度テーブル    | 速度テーブル番号を指定します。               |
| 原点復帰      | 原点復帰を行います。                    |
| ホームポジション  | ホームポジションへ移動します。               |
| CURON     | モータ励磁を On/Off します。            |

#### 7-2.2 インジケータ詳細

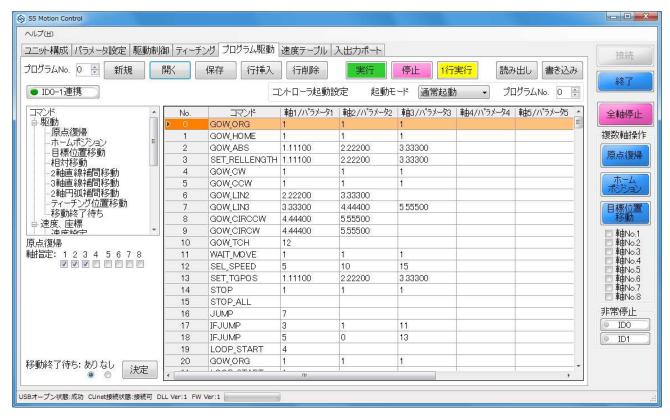
| 名称           | 説明                            |
|--------------|-------------------------------|
| BUSY         | 移動中                           |
| ポジションプログレスバー | 移動距離がグラフィカルに表示されます。           |
| 現在位置         | 軸の現在位置を表示します。単位はパラメータ詳細設定から反映 |
| ML-CCW       | メカリミット (CCW)                  |
| SL-CCW       | ソフトリミット (CCW)                 |
| ML-CW        | メカリミット (CW)                   |
| SL-CW        | ソフトリミット (CW)                  |
| COMP-ORG     | 原点復帰完了                        |



#### 8. ティーチング画面の説明

#### 8-1 ティーチングテーブル

ポイント番号毎に各軸のティーチングポイントの値を入力します。




#### 8-1.1 アクションボタン詳細

| 名称   | 説明                       |
|------|--------------------------|
| 開く   | PC に保存したファイルを呼び出します。     |
| 保存   | PC にティーチングの設定を保存します。     |
| 記憶   | ティーチングポイントを登録します。        |
| 削除   | ティーチングポイントを削除します。        |
| 移動   | 指定したティーチングポイントへ軸を移動させます。 |
| 読み出し | 本体に登録したデータを読み出します。       |
| 書き込み | 本体にティーチングデータを登録します。      |



- 9. プログラム駆動画面の説明
- 9-1 駆動コマンド選択とプログラムシーケンス



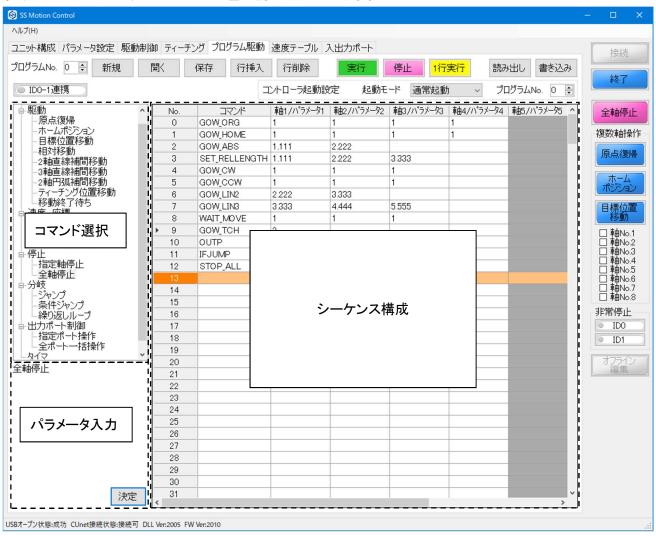
#### 9-1.1 アクションボタン詳細

| 名称        | 説明                                 |
|-----------|------------------------------------|
| プログラム No. | 1 プログラム 800 行、2 プログラムまで登録が可能       |
| 新規        | 全てのプログラム内容をクリアします。                 |
| 開く        | PC に保存したプログラム内容を呼び出します。            |
| 保存        | プログラム内容を PC に保存します。                |
| 行挿入       | 書き込み済みのプログラム行間に新規書き込み行を挿入します。      |
| 行削除       | 書き込み済みのプログラム行を削除します。               |
| 実行        | 全プログラムシークエンスを実行します。                |
| 停止        | 実行中のプログラムシークエンスを停止します。             |
| 1 行実行     | 指定プログラム番号の1行のみ実行します。               |
| 読み出し      | 本体に登録済みのプログラムを読み出します。              |
| 書き込み      | 本体にプログラムを書き込みます。「実行」前に必ず行ってください。   |
| 起動モード     | 電源投入後のプログラム起動モードを設定します。            |
|           | 通常起動 ⇒ PC ソフトまたはハンディ―ポータルにてプログラム起動 |
|           | ⇒ 電源投入後にプログラム自動起動                  |



# 9-1.2 インジケータ詳細

| 名称       | 説明             |
|----------|----------------|
| ID0-1 連携 | 2 台連携時に緑点灯します。 |


# 9-1.3 プログラム駆動コマンド一覧表

| ココンバワハ  | +984七      | コマンド          |            |  |
|---------|------------|---------------|------------|--|
| コマンド区分  | 機能         | 移動終了待ちなし      | 移動終了待ちあり   |  |
|         | 原点復帰       | GO_ORG        | GOW_ORG    |  |
| ,       | ホームポジション   | GO_HOME       | GOW_HOME   |  |
|         | 目標位置移動     | GO_ABS        | GOW_ABS    |  |
|         | 相対移動       | GO_CW、        | GOW_CW、    |  |
|         | 作出入り作列里力   | GO_CCW        | GOW_CCW    |  |
| 駆動      | 2 軸直線補間移動  | GO_LIN2       | GOW_LIN2   |  |
|         | 3 軸直線補間移動  | GO_LIN3       | GOW_LIN3   |  |
|         | 2軸円弧補間移動   | GO_CIRCW、     | GOW_CIRCW、 |  |
|         | 2 地门冰桶间移到  | GO_CIRCCW     | GOW_CIRCCW |  |
|         | ティーチング位置移動 | GO_TCH        | GOW_TCH    |  |
|         | 移動終了待ち     | WAIT_MOVE     |            |  |
|         | 速度設定       | SEL_SPEED     |            |  |
| 速度、座標   | 目標位置設定     | SET_TGPOS     |            |  |
|         | 相対移動量設定    | SET_RELLENGTH |            |  |
| 停止      | 指定軸停止      | STOP          |            |  |
|         | 全軸停止       | STOP_ALL      |            |  |
|         | ジャンプ       | JUMP          |            |  |
| 分岐      | 条件ジャンプ     | IFJUMP        |            |  |
|         | 婦心をしまって    | LOOP_START    |            |  |
|         | 繰り返しループ    | LOOP_END      |            |  |
| 出力ポート制御 | 指定ポート操作    | OUTP          |            |  |
|         | 全ポートー括操作   | OUTP_ALL      |            |  |
| タイマ     | Wait 時間    | WAIT_TIME     |            |  |

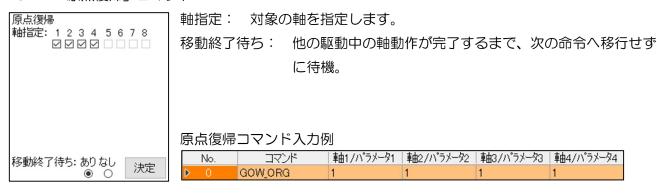


- 10. コマンド入力エリアとパラメータ詳細の説明
- 10-1 プログラム駆動画面の説明

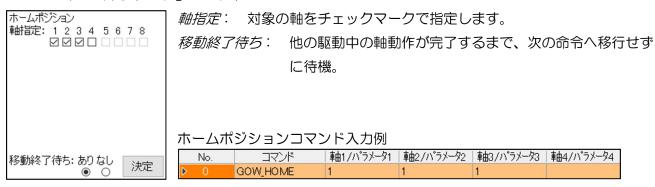
駆動コマンド入力は、3つのサブ画面で構成されています。



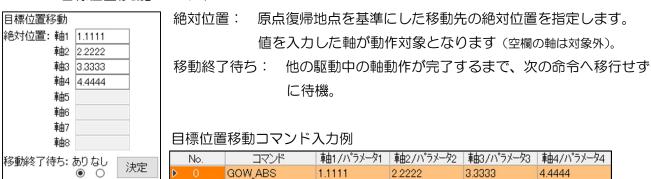
コマンド選択 - シーケンスの目的に合わせたコマンドを選択します。


パラメータ入力 - 選択されたコマンドに必要なパラメータを入力します。詳細は次項の「駆動 コマンド詳細」を参照してください。

シーケンス構成 - 入力されたパラメータ付きコマンドが表示されます。




#### 10-2 駆動コマンド詳細


# 10-2.1 「原点復帰」コマンド



#### 10-2.2 「ホームポジション」コマンド



#### 10-2.3 「目標位置移動」コマンド





#### 10-2.4 「相対移動」コマンド

任意の停止位置からの移動量を指定します。相対移動は以下のように2ステップで行います。

ステップ 1. 相対移動量設定 ステップ 2. 相対移動軸指定/移動方向 相対移動量設定 相対移動 軸指定: 1 2 3 4 5 6 7 8 正数: 車 1.11100 車 2.22200 移動方向: 軸3 3.33300 CCW CW 軸4 軸5 軸6 軸7 軸8 移動終了待ち: ありなし 決定 決定 O

正数: 停止位置からの相対移動量を指定します。値を入力した軸が対象となります(空欄の軸は対象外)。

軸指定: 対象の軸を指定します。 移動方向: 移動方向を指定します。

移動終了待ち: 他の駆動中の軸動作が完了するまで、次の命令へ移行せずに待機。

#### 相対移動コマンド入力例

|   | No. | コマンド          | 軸1/パラメータ1 | 軸2/パラメータ2 | 軸3/パラメータ3 |                          |
|---|-----|---------------|-----------|-----------|-----------|--------------------------|
| D | 0   | SET_RELLENGTH | 1.11100   | 2.22200   | 3.33300   | ← ステップ 1. 相対移動量設定        |
|   | 1   | GO_CW         |           | 1         |           | │ 🗲 ステップ 2. 相対移動軸指定/移動方向 |
|   | 2   | GOW_CCW       | 1         |           | 1         | ← ステック 2. 他以移動軸指足/移動力    |

相対移動の回転方向が軸により異なる場合には、2行に分けて指定します。

#### 10-2.5 「2 軸直線補間移動」コマンド

2軸の直線補間移動を設定します。



絶対位置: 移動先の絶対位置を指定します(指定軸数は2軸)。値を入力

した軸が動作対象となります(空欄の軸は動作対象外)。

移動終了待ち: 他の駆動中の軸動作が完了するまで、次の命令へ移行せ

ずに待機。

#### 2 軸補間移動コマンド入力例

|   | No. | コマンド     | 軸1/パラメータ1 | 軸2/パラメータ2 |
|---|-----|----------|-----------|-----------|
| ⊳ | 0   | GOW_LIN2 | 1.11100   | 2.22200   |
|   | 1   |          |           |           |



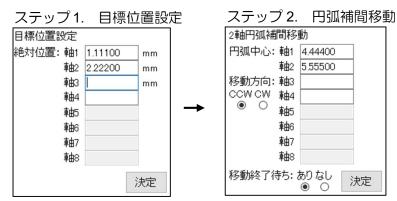
#### 10-2.6 「3 軸直線補間移動」コマンド



絶対位置: 移動先の絶対位置を指定します(指定軸数は2軸)。値を入力し

た軸が動作対象となります(空欄の軸は動作対象外)。

移動終了待ち: 他の駆動中の軸動作が完了するまで、次の命令へ移行せ


ずに待機。

#### 3 軸補間移動コマンド入力例

|   | No. | コマンド     | 軸1/パラメータ1 | 軸2/パラメータ2 | 軸3/パラメータ3 |
|---|-----|----------|-----------|-----------|-----------|
| ⊳ | 0   | GOW_LIN3 | 1.11100   | 2.22200   | 3.33300   |
|   | 1   |          |           |           |           |

#### 10-2.7 「2 軸円弧補間移動」コマンド

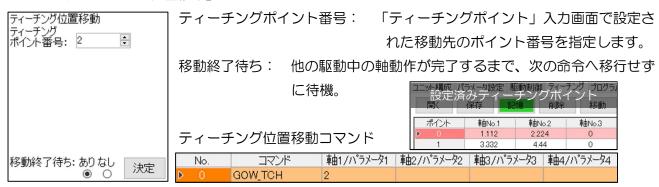
2軸円弧補間移動設定は、2ステップで行います。



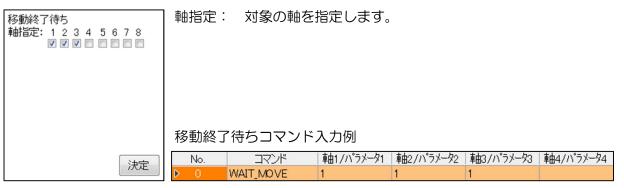
絶対位置: 移動先の絶対位置を指定します。値を入力した軸が対象となります(空欄の軸は対象外)。

円弧中心: 円弧の中心座標を指定します。この時の指定軸数は2軸です。

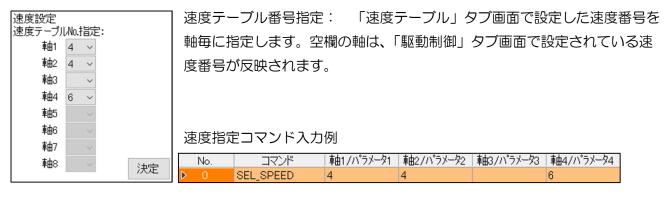
移動方向: 移動方向を指定します。


移動終了待ち: 他の駆動中の軸動作が完了するまで、次の命令へ移行せずに待機。

# 2 軸円弧補間コマンド入力例


|   | No. | コマンド       | 軸1/パラメータ1 | 軸2/パラメータ2 | 軸3/パラメータ3 | 軸4/パラメータ4 |                  |
|---|-----|------------|-----------|-----------|-----------|-----------|------------------|
|   | 0   | GOW_ABS    | 1.1111    | 2.2222    |           |           | ← ステップ 1. 目標位置設定 |
| l | ▶ 1 | GOW_CIRCOW | 4.4444    | 5.5555    |           |           | ◆ ステップ 2. 円弧補間移  |




#### 10-2.8 「ティーチング位置移動」コマンド



# 10-2.9 「移動終了待ち」コマンド



#### 10-2.10 「速度指定」設定値入力エリア





#### 10-2.11 「指定軸停止」設定値入力エリア

指定軸停止 軸指定: 1 2 3 4 5 6 7 8

軸指定:停止対象の軸を指定します。

注意:前行に実行されたコマンドの「移動終了待ち」指定が「なし」の場合、 前行を実行した直後に指定軸を停止します。

#### 指定軸停止コマンド入力例

| No. | コマンド    | 軸1/パラメータ1 | 軸2/パラメータ2 |
|-----|---------|-----------|-----------|
| 0   | GOW_ABS | 10        | 10        |
| 1   | GO_ABS  | 5         | 5         |
| ▶ 2 | STOP    | 1         |           |
| 3   |         |           |           |

# 10-2.12 「全軸停止」設定値入力エリア

決定

全軸停止

全軸を一斉に停止させます。

注意:前行に実行されたコマンドの「移動終了待ち」指定が「なし」の場合、 前行を実行した直後に全軸を停止します。

#### 全軸停止コマンド入力例

| No. | コマンド     | 軸1/パラメータ1 | <b>軸</b> 2/パラメータ2 |
|-----|----------|-----------|-------------------|
| 0   | GOW_ABS  | 10        | 10                |
| 1   | GO_ABS   | 5         | 5                 |
| ▶ 2 | STOP_ALL |           |                   |
| 3   |          |           |                   |

#### 10-2.13 「ジャンプ」設定値入力エリア

決定

ジャンプ

ジャンプ先の行番号:ジャンプ先の行番号を指定します。

ジャンプ移動コマンド入力例(4行目から1行目へジャンプ)

|          | No. | コマンド     | 軸1/パラメータ1 | 軸2/パラメータ2 | 軸3/パラメータ3 |
|----------|-----|----------|-----------|-----------|-----------|
|          | 0   | GOW_ORG  | 1         |           | 1         |
| <u> </u> | ▶1  | GOW_HOME | 1         |           | 1         |
|          | 2   | GOW_ABS  | 120       |           | 140       |
|          | 3   | GOW_ABS  |           |           | 130       |
| į.,      | • 4 | JUMP     | 1         |           |           |

#### 10-2.14 「条件ジャンプ」設定値入力エリア

決定

入力ポート番号の入力状態によりシーケンスの飛び先番号を指定します。

条件ジャンプ 入力ポート番号: 3 ● 入力状態: © ○ ジャンプ先の行番号: 1 ●

入力ポート番号:入力ポート番号を個別に指定します。

入力状態:指定された入力ポート番号の状態が指定された入力状態と一致す

る場合に、指定された行番号へジャンプします。

条件ジャンプコマンド入力例(入力3ビット目がONの時、1行目へジャンプ)

|    | No. | コマンド     | 軸1/パラメータ1 | 軸2/パラメータ2 | 軸3/パラメータ3 | <b>軸</b> 4/パ <sup>*</sup> ラメータ4 |
|----|-----|----------|-----------|-----------|-----------|---------------------------------|
|    | 0   | GOW_HOME | 1         | 1         |           |                                 |
| +- | ▶ 1 | GO_ABS   | 1.1111    | 2.2222    |           |                                 |
|    | 2   | GO_ABS   | 3.333     | 4.444     |           |                                 |
|    | 3   | IFJUMP   | 3         | 1         | 1         |                                 |



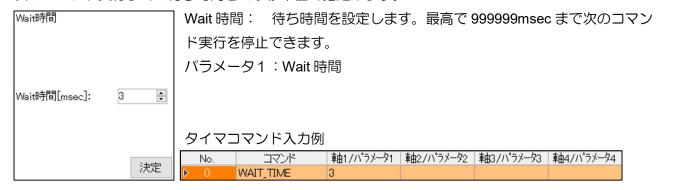
#### 10-2.15 繰り返しループ



繰り返しループ回数: LOOP\_START から LOOP\_END までの命令を指定された回数だけ繰り返し実行します。

|    | 繰り返しループマンド入力例 (同じコマンドを3回繰り返す |            |           |           |  |  |
|----|------------------------------|------------|-----------|-----------|--|--|
|    | No.                          | コマンド       | 軸1/パラメータ1 | 軸2/パラメータ2 |  |  |
|    | 0                            | GOW_HOME   | 1         | 1         |  |  |
| :  | ▶ 1                          | LOOP_START | 3         |           |  |  |
| x3 | 2                            | GO_ABS     | 1.1111    | 2.2222    |  |  |
| XS | 3                            | GO_ABS     | 3.333     | 4.444     |  |  |
| 1  | • 4                          | LOOP_END   |           |           |  |  |

#### 10-2.16 指定出力ポート操作


| N OFF | 出力ポート番号:<br>出力状態: 出力状<br>パラメータ1: | 対象のポート番号を指定<br>態を指定します。 | しま | ます。 |   |     |              |    |    |     |   |
|-------|----------------------------------|-------------------------|----|-----|---|-----|--------------|----|----|-----|---|
|       |                                  |                         | ı  | ▶出力 |   | ·   | o.6 <i>1</i> | がO | ΝI | こなる | る |
|       | 指定出力ポート操作                        | コマンド入力例                 |    | OUT | 7 | 6 5 | 4            | 3  | 2  | 1   | 0 |
| 決定    | No. コマンド                         | 車由1/パラメータ1   車由2/パラメータ  | 2  | ID0 |   |     |              |    |    |     |   |
| 70C   | OUTP 0                           | 6 1                     |    | IUI |   |     |              |    |    |     |   |

#### 10-2.17 全出力ポート操作



#### 10-2.18 タイマ

次のコマンド実行までの待ち時間をミリ秒単位で指定します。





10-3 オフラインモード



コントローラ本体に通信接続していない状態でも 「プログラム駆動」のタブを開き、シーケンス編集ができる 機能です。

プログラムフィールドの新規作成や PC に保存された既存の プログラムを呼び出し、編集を可能にしています。





オフライン編集モードに入った場合、自動的に「プログラム駆動」タブに移動し、プログラムフィールドの編集関連の機能以外は使用することができません。本体との通信を開始する場合、 プログラムを終了し、再起動する必要があります。

本ソフトを再起動する前に、必ず編集したプログラムフィールドの内容を保存してください。

ユニット構成 パラメータ設定 駆動制御 ティー

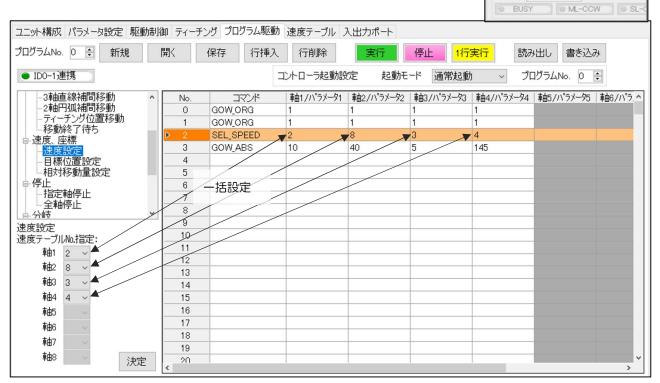
U

輔No. 1 🖭

速度テ

個別設定




#### 11. 速度テーブル画面の詳細

全部で15段階の速度定義を行えます。各テーブル項目には、起動速度等のパラメータを有し、各軸の速度や加減速の設定はこのテーブルの中から選ぶことが出来ます。



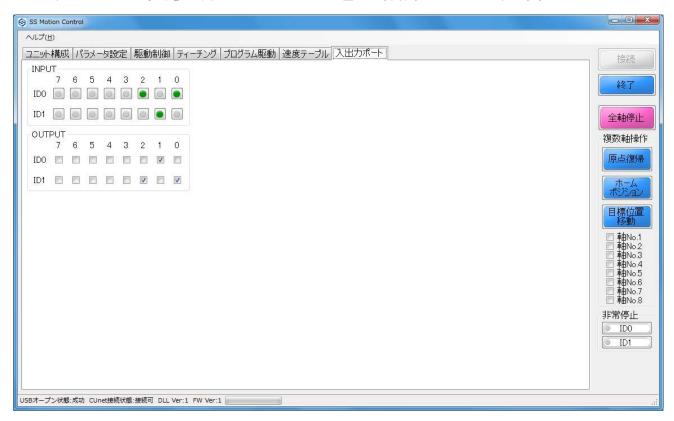
#### 11-1 各軸の速度を変える方法:

- 1. 右画面のように「駆動制御」のタブ画面にて個別に指定を行う。
- 2.「プログラム駆動」画面にて単軸、または、複数軸へ設定する。



速度の指定番号は、速度テーブルに準じます。

#### 注意:


速度テーブルNo毎の起動速度、駆動速度、加速時間、S字レートの設定を変更する場合:

- ・機種選択が全て「機種未選択」のままの場合、速度テーブルNo.毎の設定を変更できません。
- 機種選択がコントローラのフラッシュ ROM に書き込まれている場合、それら機種データを速度テーブル変更前に読み出してください。機種の読み出しは、パラメータ設定画面で行います。



#### 12. 入出力ポート画面の詳細

このタブ画面では、バックパネルの I/O ポートの状態を確認することが出来ます。また、出力信号に関しては、「プログラム駆動」と同じようにこのタブ画面でも操作することが出来ます。





補足

Appendix A. トラブルシューティング

| こんなときは |                   | ここをお確かめください                         |  |  |
|--------|-------------------|-------------------------------------|--|--|
| 接続     | 接続ボタンを操作後に接続が失敗する | き続が失敗する ・PC とマスターコントローラ間の USB ケーブルが |  |  |
|        |                   | 正しく接続されていますか?                       |  |  |
|        |                   | ・PC に USB ドライバが正しくセットアップできて         |  |  |
|        |                   | いますか?                               |  |  |
|        | ユニット構成画面に接続されている  | ・コントローラ間の LAN ケーブルが正しく接続され          |  |  |
|        | ステージが表示されない       | ていますか?                              |  |  |
|        |                   | ・コントローラのロータリースイッチで軸 No.が正           |  |  |
|        |                   | しく設定されていますか?                        |  |  |
| 操作     | タブ選択操作およびパラメータ設定画 | ・USB が接続されていますか?                    |  |  |
| 制限     | 面の操作ができない         | ・USB 通信が成功していますか?                   |  |  |
|        |                   | 参考:4-4 成功/失敗している場合                  |  |  |
|        | 駆動制御画面にて、目標位置指定およ | ・該当する軸 No.のステージが有効になっています           |  |  |
|        | び開始の操作ができない       | か?(有効/無効ボタンに禁止マークが表示されてい            |  |  |
|        |                   | ると無効状態です)                           |  |  |
|        |                   | 参考:5 - 1 駆動制御軸の有効/無効ボタン             |  |  |



# ソフト更新履歴

# SS モーションコントローラ ソフトウェア更新履歴

| バージョン   | 更新日         | 更新点                                   |
|---------|-------------|---------------------------------------|
| 1.0.0.0 | 2019年06月30日 | 初版                                    |
| 1.0.0.0 | 2019年08月30日 | WEB・DL サービス開始                         |
| 1.0.0.1 | 2019年11月15日 | ハンディポータルとのデータ連携の不具合を修正                |
|         |             | 稀に円弧補間が原点位置から行えない不具合を修正               |
| 1.0.1.1 | 2019年12月04日 | 一部 I/O による条件分岐が正常に行えない不具合を修正          |
|         |             | ゴニオ KGB06 シリーズと回転 KRE103560 をプリセットに追加 |
|         |             |                                       |
|         |             |                                       |
|         |             |                                       |
|         |             |                                       |
|         |             |                                       |

#### 取り扱い説明書 ソフトウェア編 更新履歴

| バージョン | 更新日         | 更新履歴               |
|-------|-------------|--------------------|
| 1.0.0 | 2019年06月30日 | 初版                 |
| 1.0.1 | 2019年07月15日 | 誤字修正               |
| 1.1.0 | 2019年09月25日 | 大幅再編。WEB・DL サービス開始 |
| 1.1.1 | 2019年10月15日 | 各コマンドの詳細追記         |
| 1.1.2 | 2019年10月25日 | オフライン編集モードの頁修正     |
| 1.1.3 | 2019年12月04日 | ソフトウェア&マニュアル更新履歴追記 |
|       |             |                    |



■お問い合わせは弊社まで

TEL 0120-789-446

FAX 0120-789-449

URL http://jpn.surugaseiki.com/ Email info@suruga-g.co.jp

# ミスミグループ 駿河精機 株式会社

■本社・工場 〒424-8566 静岡県静岡市清水区七ツ新屋505

■東京営業所 〒105-0011 東京都港区芝公園2-4-1 芝パークビルB館6F

〒532-0011 大阪府大阪市淀川区西中島7-5-25 新大阪ドイビル4F ■関西営業所